Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling.

نویسندگان

  • Souha Berriri
  • Ana Victoria Garcia
  • Nicolas Frei dit Frey
  • Wilfried Rozhon
  • Stéphanie Pateyron
  • Nathalie Leonhardt
  • Jean-Luc Montillet
  • Jeffrey Leung
  • Heribert Hirt
  • Jean Colcombet
چکیده

Plant mitogen-activated protein kinases (MAPKs) are involved in important processes, including stress signaling and development. In a functional yeast screen, we identified mutations that render Arabidopsis thaliana MAPKs constitutively active (CA). Importantly, CA-MAPKs maintain their specificity toward known activators and substrates. As a proof-of-concept, Arabidopsis MAPK4 (MPK4) function in plant immunity was investigated. In agreement with the phenotype of mpk4 mutants, CA-MPK4 plants were compromised in pathogen-induced salicylic acid accumulation and disease resistance. MPK4 activity was found to negatively regulate pathogen-associated molecular pattern-induced reactive oxygen species production but had no impact on callose deposition, indicating that CA-MPK4 allows discriminating between processes regulated by MPK4 activity from processes indirectly affected by mpk4 mutation. Finally, MPK4 activity was also found to compromise effector-triggered immunity conditioned by the Toll Interleukin-1 Receptor-nucleotide binding (NB)-Leu-rich repeat (LRR) receptors RPS4 and RPP4 but not by the coiled coil-NB-LRR receptors RPM1 and RPS2. Overall, these data reveal important insights on how MPK4 regulates plant defenses and establishes that CA-MAPKs offer a powerful tool to analyze the function of plant MAPK pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1.

The Arabidopsis (Arabidopsis thaliana) MKK1 and MKK2 mitogen-activated protein kinase kinases have been implicated in biotic and abiotic stress responses as part of a signaling cascade including MEKK1 and MPK4. Here, the double loss-of-function mutant (mkk1/2) of MKK1 and MKK2 is shown to have marked phenotypes in development and disease resistance similar to those of the single mekk1 and mpk4 ...

متن کامل

The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis.

In Arabidopsis thaliana, the MEKK1-MKK1/MKK2-MPK4 mitogen-activated protein (MAP) kinase cascade represses cell death and immune responses. In mekk1, mkk1 mkk2, and mpk4 mutants, programmed cell death and defense responses are constitutively activated, but the mechanism by which MEKK1, MKK1/MKK2, and MPK4 negatively regulate cell death and immunity was unknown. From a screen for suppressors of ...

متن کامل

Constitutively active MPK4 helps to clarify its role in plant immunity.

Mitogen-Activated Protein Kinase (MAPK) modules are often involved in stress responses and plant developmental processes. Among these MAPKs, MPK4 has a complex role in biotic stress signaling, cell division control and cytoskeletal organization. mpk4 knockout (KO) plants are dwarfed and very sick, making it difficult to distinguish between cause and effect of its phenotype. To overcome this dif...

متن کامل

The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis.

The Arabidopsis mitogen-activated protein kinase (MAPK) kinase 2 (MKK2) and the downstream MAPKs MPK4 and MPK6 were isolated by functional complementation of osmosensitive yeast mutants. In Arabidopsis protoplasts, MKK2 was specifically activated by cold and salt stress and by the stress-induced MAPK kinase kinase MEKK1. Yeast two-hybrid, in vitro, and in vivo protein kinase assays revealed tha...

متن کامل

The MAP kinase substrate MKS1 is a regulator of plant defense responses.

Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 24 10  شماره 

صفحات  -

تاریخ انتشار 2012